

RESEARCH TRACK

GROOT: Effective Design of Biological Sequences with Limited Experimental Data

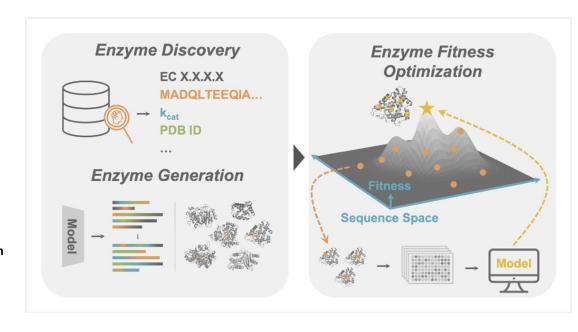
by:

Thanh V. T. Tran → FPT Software AI Center

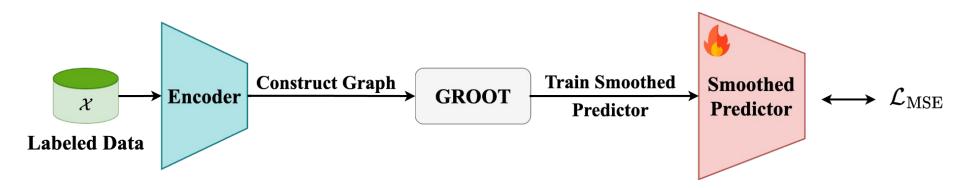
Nhat Khang Ngo → FPT Software Al Center

Viet Anh Nguyen → FPT Software Al Center

Truong Son Hy → University of Alabama at Birmingham

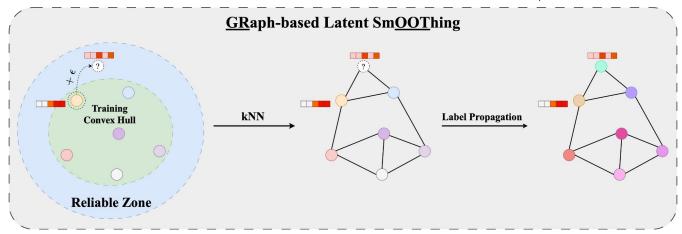


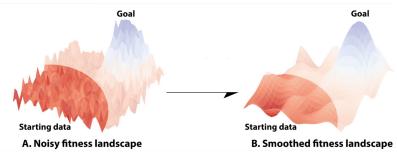
Motivation



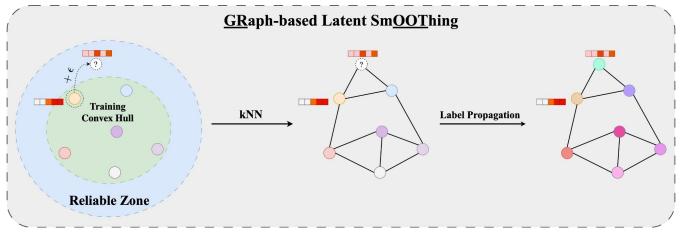
- Rapid design via ML: Modern protein optimization models can propose thousands of variants in silico, dramatically accelerating the design cycle.
- Limited data scenarios: Existing methods neglect the scenario of extremely limited labeled data and fail to utilize the abundant unlabeled data.
- Label bottleneck: Training such models requires ground-truth fitness labels, yet each measurement demands cloning, expression, purification, and functional assays—costly in time, money, and lab resources.
- Need for sample-efficient methods: To unlock ML-guided experimental design, we must develop algorithms that learn from few labels, reducing wet-lab burden without sacrificing performance.

Method: Overview



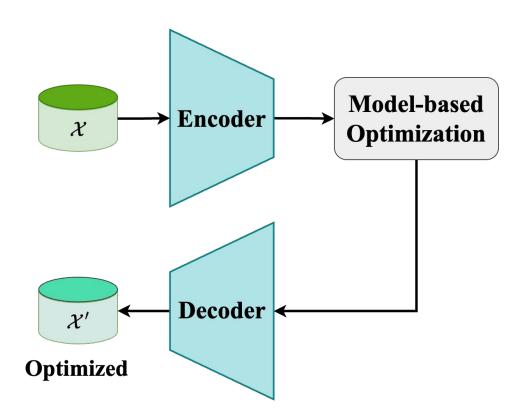

- 1. Train a VAE with labeled X and unlabeled data.
- 2. **Encode labeled sequences** → latent vectors.
- 3. **GROOT** synthesizes new samples $\mathbb S$ with pseudo experimental labels.
- 4. **Train a predictor** on these samples ($X \cap S$) with MSE loss.

Method: GROOT



- 1. Introduce mutations into latent sample.
- 2. Construct kNN graph in the latent space.
- 3. **Assign** pseudo labels for new samples and **smoothen** the landscape.

Why reliable?


Question: Are assigned pseudo labels reliable?

$$\mathbb{E}[D(z,Conv(\mathbb{X}))] < 2(1-eta)\sqrt{d}$$

Distance from synthesized samples and training set are **constrained** and **controllable**

Method: MBO

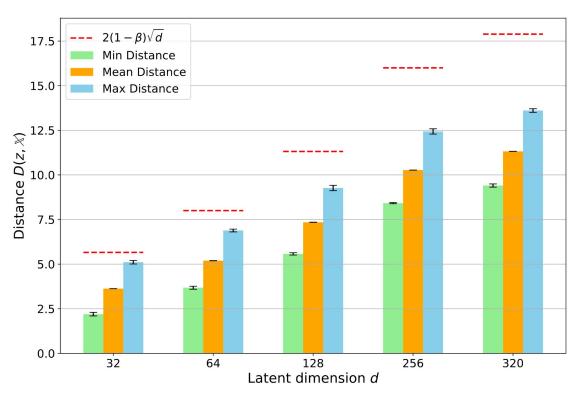
- Encode initial sequences X → latent embeddings.
- MBO search: surrogate explores the latent space for points with maximal predicted fitness.
- Decode optimized embeddings → novel sequences X' ready for validation.

Data Preparation

Dataset and Task Definition

Task	Difficulty	Fitness Range (%)	Mutational Gap	Best Fitness	$ \mathcal{D} $
AAV	Harder1	< 30th	13	0.33	1157
	Harder2	< 20th	13	0.29	920
	Harder3	< 10th	13	0.24	476
GFP	Harder1	< 30th	8	0.10	1129
	Harder2	< 20th	8	0.01	792
	Harder3	< 10th	8	0.01	397

Experimental Results


	AAV harder1 task		AAV harder2 task			AAV harder3 task			
Method	Fitness ↑	Diversity	Novelty	Fitness ↑	Diversity	Novelty	Fitness ↑	Diversity	Novelty
AdaLead	0.38 (0.0)	5.5 (0.5)	7.0 (0.7)	0.43 (0.0)	4.2 (0.7)	7.8 (0.8)	0.37 (0.0)	6.22 (0.9)	8.0 (1.2)
CbAS	0.02 (0.0)	22.9 (0.1)	18.5 (0.5)	0.01 (0.0)	23.2 (0.1)	19.3 (0.4)	0.01 (0.0)	23.2 (0.1)	19.3 (0.4)
ВО	0.00(0.0)	20.4 (0.3)	21.8 (0.4)	0.01 (0.0)	20.4 (0.0)	22.0 (0.0)	0.01 (0.0)	20.6 (0.3)	22.0 (0.0)
GFN-AL	0.00 (0.0)	15.4 (6.2)	21.6 (0.5)	0.00 (0.0)	8.1 (3.5)	21.6 (1.0)	0.00 (0.0)	7.6 (0.8)	22.6 (1.4)
PEX	0.23 (0.0)	6.4(0.5)	3.8 (0.7)	0.30 (0.0)	7.8 (0.4)	5.0 (0.0)	0.26 (0.0)	7.3 (0.7)	4.4 (0.5)
GGS	0.30 (0.0)	13.6 (0.2)	14.5 (0.3)	0.27 (0.0)	16.0 (0.0)	19.4 (0.0)	0.38 (0.0)	7.0 (0.1)	9.6 (0.1)
ReLSO	0.15 (0.0)	20.9 (0.0)	13.0 (0.0)	0.17 (0.0)	20.3 (0.0)	13.0 (0.0)	0.22 (0.0)	17.8 (0.0)	11.0 (0.0)
S-ReLSO	0.24 (0.0)	11.5 (0.0)	13.0 (0.0)	0.28 (0.0)	16.4 (0.0)	6.5 (0.0)	0.27 (0.0)	17.7 (0.0)	11.0 (0.0)
GROOT (GA)	0.37 (0.0)	13.6 (0.9)	10.0 (0.7)	0.36 (0.0)	13.7 (1.1)	10.1 (0.9)	0.34 (0.1)	14.0 (2.2)	10.0 (1.4)
GROOT	0.46 (0.1)	9.8 (1.6)	12.2 (0.5)	0.45 (0.0)	9.9 (0.8)	13.0 (0.0)	0.42 (0.1)	11.0 (2.0)	13.0 (0.0)
	GFP harder1 task		GFP harder2 task			GFP harder3 task			
Method	Fitness ↑	Diversity	Novelty	Fitness ↑	Diversity	Novelty	Fitness ↑	Diversity	Novelty
AdaLead	0.39 (0.0)	8.4 (3.2)	9.0 (1.2)	0.4 (0.0)	7.3 (2.8)	9.8 (0.4)	0.42 (0.0)	6.4 (2.3)	9.0 (1.2)
CbAS	-0.08 (0.0)	172.2 (35.7)	201.5 (1.5)	-0.09 (0.0)	158.4 (34.8)	202.0 (0.7)	-0.08 (0.0)	186.4 (33.4)	201.5 (0.9)
GFN-AL	0.21(0.1)	74.3 (55.3)	219.2 (3.3)	0.14 (0.2)	27.0 (9.5)	223.5 (2.4)	0.21 (0.0)	37.5 (21.7)	219.8 (4.3)
PEX	0.13 (0.0)	12.6 (1.2)	7.1 (1.1)	0.17 (0.0)	12.6 (1.2)	7.1 (1.1)	0.19 (0.0)	12.2 (1.1)	7.8 (1.7)
GGS	0.67 (0.0)	4.7 (0.2)	9.1 (0.1)	0.60 (0.0)	5.4 (0.2)	9.8 (0.1)	0.00 (0.0)	15.7 (0.4)	19.0 (2.2)
ReLSO	$0.94~(0.0)^{\dagger}$	0.0 (0.0)	8.0 (0.0)	0.94 (0.0)	0.0 (0.0)	8.0 (0.0)	0.94 (0.0)	0.0 (0.0)	8.0 (0.0)
S-ReLSO	$0.94~(0.0)^{\dagger}$	0.0 (0.0)	8.0 (0.0)	0.94 (0.0)	0.0 (0.0)	8.0 (0.0)	0.94 (0.0)	0.0 (0.0)	8.0 (0.0)
GROOT	0.88 (0.0)	3.0 (0.2)	7.0 (0.0)	0.87 (0.0)	3.0 (0.1)	7.5 (0.5)	0.62 (0.2)	7.6 (1.5)	8.6 (1.5)

[†] indicates that the generated population has collapsed (i.e., producing only a single sequence).

In-silico Evaluator: An independent oracle whose checkpoint are taken from [2].

Empirical Validation on Upper Bound

Effectiveness of GROOT

Task	Difficulty	Smoothed	Fitness ↑	Diversity	Novelty
	Harder1	No	0.12	20.0	10.0
	пагиегт	Yes	0.46	9.8	12.2
AAV	Harder2	No	0.11	20.0	9.6
	Haruel2	Yes	0.45	9.9	13.0
	Harder3	No	0.12	20.1	10.0
	Haruers	Yes	0.42	11.0	13.0
1	Harder1	No	-0.12	71.0	42.2
	Tiaiueii	Yes	0.88	12 20.0 16 9.8 11 20.0 15 9.9 12 20.1 12 11.0 12 71.0 18 69.5 18 69.5 17 64.0	7.0
GFP	Harder2	No	-0.18	69.5	41.1
	Tranuer2	Yes	0.87	3.0	7.5
	Harder3	No	-0.17	64.0	37.0
	Haruers	Yes	0.62	7.6	8.6

THANK YOU!

